Faculty of Electronics and Telecommunications

STUDY MODULE D	ESCRIPTION FORM			
Name of the module/subject Digital Modulations and Their Applications		Code 1010804161010813601		
Field of study Electronics and Telecommunications	Profile of study (general academic, practical) general academic	Year /Semester 3 / 6		
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) elective		
Cycle of study:	Form of study (full-time,part-time)			
First-cycle studies	part-time			
No. of hours		No. of credits		
Lecture: 20 Classes: - Laboratory: -	Project/seminars:	- 2		
Status of the course in the study program (Basic, major, other) (university-wide, from another field)				
other univer		ersity-wide		
Education areas and fields of science and art		ECTS distribution (number and %)		
technical sciences		2 100%		
Technical sciences		2 100%		
Pagnancible for aubicat / lecturors				

Responsible for subject / lecturer:

dr inż. Piotr Tyczka

email: tyczka@et.put.poznan.pl

tel. 61 665 39 18

Faculty of Electronics and Telecommunications

ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Has a systematic knowledge of mathematical analysis, algebra and theory of probability [K1_W01]
		Has a systematic knowledge, together with necessary mathematical background, of 1D signal theory; this knowledge allows him/her to understand the representation of signals and signal analysis in time domain and frequency domain [K1_W06]
		Knows and understands basic concepts and methods of description of linear and non-linear electronic systems, control systems and telecommunications systems [K1_W10]
2	Skills	Is able to use known mathematical analysis, algebra and theory of probability concepts to solve basic problems in electronics and telecommunication [K1_U07]
		Demonstrates the ability to solve problems related to signal analysis in time domain and frequency domain [K1_U10]
3	Social competencies	Is aware of the limitations of his/her current knowledge and skills; is committed to further self-study [K1_K01]

Assumptions and objectives of the course:

To present the fundamentals of digital modulation techniques which are used in digital communication systems. It covers baseband signal transmission, transmission with the use of a sinusoidal carrier and digital signal transmission over intersymbol interference channels.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Has a knowledge of selection of elementary signals and data symbol formats for baseband signal transmission, structures of optimal synchronous and asynchronous receiver, digital modulation techniques and equalization of transmission channel characteristics. [K1_W15]
- 2. Has a knowledge from communication theory of criteria and design of optimal receiver structures for baseband and passband signal transmission and of determining error probability for digital modulations over AWGN channels [K1_W17]
- 3. Has an elementary knowledge of applications of presented digital transmission techniques in contemporary and future digital communication systems. [K1_W24]

Skills:

- 1. Is able to calculate/determine basic parameters of signals used in baseband and passband transmission and of digital communication systems utilizing these signals. [K1_U15]
- 2. Is able to analyze the operation of receivers for digital signals and to design the key blocks of the transmitter and receiver of digital transmission systems. [K1_U19]

Social competencies:

1. Is able to notice and formulate directions of digital communication systems evolution both in the dimension of fundamental research and system view. - [K1_K04]

Assessment methods of study outcomes

Final test conducted after giving all lectures

Course description

- 1. Digital baseband transmission
- Shaping of Elementary Signals
- Selection of the Data Symbol Format
- Optimal Reception of Binary and Multilevel Signals
- 2. Digital Modulations of the Sinusoidal Carrier
- Optimal Synchronous Receiver
- Optimal Asynchronous Receiver
- ASK Modulation
- FSK Modulation
- PSK Modulation
- Differential Phase Shift Keying (DPSK)
- QAM Modulation
- Constant Envelope Modulations ? Continuous Phase Modulation (CPM)
- Trellis Coded Modulation TCM
- Multitone Modulations OFDM
- 3. Digital Transmission on Channels Introducing Intersymbol Interference
- Intersymbol Interference
- Linear Equalizers
- Nonlinear Equalizers

Basic bibliography:

1. Podstawy cyfrowych systemów telekomunikacyjnych, K. Wesołowski, Wydawnictwa Komunikacji i Łączności, Warszawa, 2003

Additional bibliography:

- 1. Systemy telekomunikacyjne, t. I i II, S. Haykin, Wydawnictwa Komunikacji i Łączności, Warszawa, 1999
- 2. Digital Communications, wyd. 4, J. G. Proakis, McGraw-Hill, New York, 2000

Result of average student's workload

Activity	Time (working hours)
1. Participation in lectures which include computational examples illustrating issues presented	20
2. Solving problems given as a homework during lectures	10
3. Preparation to the final test and presence on the test	15

Student's workload

Source of workload	hours	ECTS
Total workload	50	2
Contact hours	22	1
Practical activities	28	1